RTX-1738 Exhibits Analgesic Activity Across a Broad Range of Preclinical Pain Models Jose A. Matta, PhD¹, Weston Davini, MS¹, Laurie P. Volak, PhD¹, Brock T. Shireman, PhD¹, David Bredt, MD, PhD¹ ¹Rapport Therapeutics, Inc., San Diego, CA, USA

Background

- There is an urgent need for pain medication with a novel mechanism of action that provides clinically meaningful analgesia along with improved tolerability
- AMPA receptors (AMPARs) are essential to pain sensitization processes involved in various disease states
- Nonselective AMPAR antagonists show analgesic properties in preclinical and clinical settings
- Adverse effects of targeting AMPARs broadly throughout the brain limit the therapeutic index and clinical utility of these antagonists
- Transmembrane AMPAR regulatory proteins (TARPs) are AMPAR auxiliary subunits with regionspecific expression that modulate AMPAR synaptic physiology and pharmacology
- TARPγ8 is selectively expressed in pain-processing regions: spinal cord dorsal horn, anterior cingulate cortex, hippocampus, and amygdala^{1,2}
- The selective expression pattern of TARPγ8 offers opportunities to develop novel first-in-class analgesics with an improved therapeutic index
- Rodents administered TARPγ8 inhibitors do not display motoric impairment on the rotarod test

Objective

• We evaluated RTX-1738, a highly potent, selective, brain-penetrant, orally bioavailable AMPAR/TARP γ 8 inhibitor, in a variety of pain models

Methods

- All studies followed AAALAC guidance and were performed according to guidelines approved by the IACUC
- RTX-1738 was tested in preclinical models of acute thermal nociception and inflammatory, post-surgical, and neuropathic pain (**Table 1**)
- Statistical analyses
- One-way ANOVA following multiple comparison testing was used, except for the PWT response in the SNL model

 Two-way ANOVA followed by Dunnett's multiple comparison test was used for PWT in SNL

Model	
Formalin SD rats, male, 6-8 weeks old n=8/group	•
Spinal nerve ligation (SNL) SD rats, male, 6-8 weeks old n=10/group	
Complete Freud's adjuvant (CFA) SD rats, male, 6-8 weeks old n=10/ group	•
Carrageenan SD rats, male, 6-8 weeks old n=10/group	•
Hot plate and tail flick SD rats, male, 6-8 weeks old n=10/group	•
Paw incision (PI) C57BL/6J mice, male, 6-8 weeks old n=10/group	1 F •
^a Von Frey test: mec timepoint, averaged ^b Paw volume meas	ha d. Ur

subject per timepoint, averaged.

Table 1. Preclinical Models and Protocols

Freatment groups	Induction procedure	Pain response measured	Indication/ nociceptive modality	
Vehicle <i>p.o.</i> Gabapentin, 150 mg/kg <i>i.p.</i> RTX-1738, 3 mg/kg <i>p.o.</i>	Formalin (5%, 50 µL) injection into dorsal surface of left hind paw, 1h post- treatment	 Nociceptive behaviors: Duration of lifting, licking, biting, and trembling (s) Phase 1 (0-10 min post-formalin injection) Phase 2 (20-60 min post-formalin injection) 	Persistent pain	
Vehicle Gabapentin, 75 mg/kg RTX-1738, 3 mg/kg All groups <i>p.o., q.d.</i> Days 14-20	SNL surgery: Left L5 and L6 spinal nerves isolated and tightly ligated	Von Frey Paw withdrawal threshold (PWT; g) ^a 1.5h post-treatment on Days 14, 16, 18, and 20	Neuropathic pain	
Vehicle Naproxen, 20 mg/kg RTX-1738, 3 mg/kg All groups <i>p.o.</i>	Day 0: CFA injection (50 µL) sub- plantar to left hind paw	 Von Frey PWT (g)^a Day 0: Pre-CFA baseline Day 3: Pre-treatment baseline and 2h post-treatment 		
Vehicle Indomethacin, 10 mg/kg RTX-1738, 3 mg/kg All groups <i>p.o.</i>	Carrageenan injection (3%, 100 µL) sub-plantar to left hind paw, 1h post- treatment	 Von Frey PWT (g)^a Pre-treatment baseline 3h and 5h post- treatment Paw volume (mL)^b 3h and 5h post- treatment 	Inflammatory pain	
Vehicle <i>p.o.</i> Gabapentin, 300 mg/kg <i>i.p.</i> RTX-1738, 3 mg/kg <i>p.o.</i>	Hot plate: 51.5°C Tail flick: 36°C Average of 2 repeated tests	Nocifensive responses: Hot plate – licking (s); Tail flick – latency to tail withdrawal (s) • Pre-treatment • Post-treatment –2h, RTX-1738 –1h, gabapentin	Acute thermal nociception	
No PI + vehicle; PI + Vehicle Naproxen, 90 mg/kg RTX-1738, 3 mg/kg All groups <i>p.o.</i>	PI surgery: plantar muscles clamped and cut longitudinally ³	Hargreaves apparatus Paw withdrawal latency (PWL; s) ^c • 2h post-incision ⁴ • 2h, 4h, and 6h post-treatment	Post-surgical pain	

nanical allodynia measured by PWT (q) over 30s maximum, repeated twice per subject per

ired via liquid displacement once per timepoint

^cHargreaves apparatus: thermal hyperalgesia measured by PWL (s) over 20s maximum, repeated twice per

CFA, complete Freud's adjuvant; PI, paw incision; PWL, paw withdrawal latency; PWT, paw withdrawal threshold; SD, Sprague-Dawley; SNL, spinal nerve ligation.

Results

p*<0.05, *p*<0.01; vs vehicle.

• RTX-1738 (3 mg/kg, p.o.) attenuated inflammatory and neuropathic pain-related behaviors in a comparable manner to gabapentin (150 or 300 mg/kg, *i.p.*), indomethacin (10 mg/kg, *p.o.*), and naproxen (20 mg/kg, *p.o.*; Figures 1-5)

Figure 4. RTX-1738 Increased Latency to Thermal Response in the Hot Plate and Tail Flick Assays

***p*<0.01, vs vehicle.

Safety

- There were no observations of neurological or muscular dysfunction
- Cage-side observations yielded some hyperactivity in animals treated with RTX-1738, but there were no abnormal clinical signs

Conclusions

- RTX-1738, a highly potent, selective, brain-penetrant, orally bioavailable AMPAR/TARP γ 8 inhibitor, showed statistically significant efficacy across broad modalities of pain processing
- These results support the role of AMPARs in pain processing and the potential of selectively targeting TARPγ8 AMPARs in the development of novel broadspectrum analgesics
- The regiospecificity of TARPγ8 expression is aligned with key areas of pain processing
- RTX-1738 was well tolerated in rodents at efficacious doses
- Use of AMPAR/TARPγ8 inhibitors for clinical testing across a broad range of pain indications is warranted

REFERENCES

- Knopp KL, et al. *J Pharmacol Exp Ther*. 2019;369(3):345-63.
- Larsson M, et al. *Neuroscience*. 2013;248:180-93.
- Morgan JW, et al. *Method Cell Bio*. 2022;168:249-76. 4. Liu M, et al. *Pain*. 2013;154(9):1551-68.

ACKNOWLEDGMENTS

Sponsored by Rapport Therapeutics, Inc. The authors thank Mari Willeman, PhD, and Anthony DiLauro, PhD, of PharmaWrite, LLC, for medical writing and editorial assistance, which were funded by Rapport Therapeutics, Inc. This poster was prepared according to the International Society for Medical Publication Professionals' "Good Publication Practice (GPP) Guidelines for Company-Sponsored Biomedical Research: 2022 Update."

DISCLOSURES

JAM, WD, LPV, BTS, DB: employees of Rapport Therapeutics, Inc; stock ownership in Rapport Therapeutics, Inc.

For a copy of this poster, use your smartphone to scan the QR code.

